Содержание: 2019 | 2018 | 2017 | 2016 | 2015 | 2014 |2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001

2009, 14

П. Маразиоти

Численное моделирование шума горения

язык: английский

получена 15.09.2009, опубликована 12.11.2009

Скачать статью (PDF, 400 кб, ZIP), используйте команду браузера "Сохранить объект как..."
Для чтения и распечатки статьи используйте «Adobe Acrobat© Reader» версии 4.0 или выше. Эта программа является бесплатной, ее можно получить на веб-сайте компании Adobe© (http://www.adobe.com/).

АННОТАЦИЯ

Численно исследуется формирование шума во фронте горения пламени, связанного с турбулентным взаимодействием, выделением теплоты и химическими флуктуациями. Расчеты показали, что положение максимума шумоизлучения совпадает с областью наибольшей температуры. Шумоизлучение и спектры для разных типов пламени отличаются. Представленная методология подтверждается экспериментально.

Ключевые слова: шум горения, турбулентное горение, моделирование.

13 страниц, 7 иллюстраций

Как сослаться на статью: П. Маразиоти. Численное моделирование шума горения. Электронный журнал "Техническая акустика", http://ejta.org, 2009, 14.

ЛИТЕРАТУРА

1. Lighthill, M. J. On sound generated aerodynamically. I. General theory. Proc. Roy. Soc, A 211, 564-587, 1952.
2. Klein, S. A. and Kok, J. B. W. Sound generation by turbulent non-premixed flames. Combustion Science and Technology, vol. 149, 1999.
3. Singh, K. K., Frankel, S. H. and Gore, J. P. Effects of combustion on the sound pressure generated by circular jet flows. Journal of American Institute of Aeronautics and Astronautics, 41, 319-321, 2003.
4. Singh, K. K., Frankel, S. H. and Gore, J. P. Study of spectral noise emissions from standard turbulent non-premixed flames. Journal of American Institute of Aeronautics and Astronautics, 42, 931-936, 2004.
5. Klein, S. A. On the acoustics of turbulent non-premixed flames, PhD thesis, University of Twente, Enschede, The Netherlands, 2000.
6. Brick, H., Piscoya, R., Ochmann, M. and Koltzsch, P. Modelling of combustion noise with the Boundary Element Method and Equivalent Source Method. Internoise-2004.
7. P. Boienau, Y. Gerrais and V. Morice. An aerothermoacoustic model for computation of sound radiated by turbulent flames. Internoise-96, 495-508, 1996.
8. Chen, M., Herrmann, M. and Peters, N. Flamelet modeling of lifted turbulent CH4/air and C3H8/air jet diffusion flames. Proc. Comb. Inst., 28, 167, 2000.
9. P. Koutmos. Damkohler number description of local extinction in turbulent methane jet diffusion flames. Fuel, 78, 623-626, 1999.
10. Schneider, C., Dreizler, A., Janicka, J. and Hassel, E. Flow field measurements of stable and locally extinguishing hydrocarbon-fuelled jet flames. Combustion and Flame 135, 185-190, 2003.
11. Kempf, A., Sadiki, A. and Janicka, J. Prediction of finite chemistry effects using large-eddy simulation. in Proc. Comb. Inst. 29, 2002.
12. P. Koutmos, C. Mavridis and D. Papailiou. Time-dependent computation of turbulent bluff-body diffusion flames close to extinction. International Journal of Numerical Methods for Heat and Fluid Flow, 9, 39-59, 1999.
13. Koutmos, P. and Marazioti, P. Identification of local extinction topology in axisymmetric bluff-body diffusion flames with a reactedness-mixture fraction presumed probability density function model. International Journal for Numerical Methods in Fluids, 35, 939-959, 2001.
14. Meier, W., Barlow, R., Chen, Y. and Chen, J. Raman/Rayleigh/LIF measurements in a turbulent CH4/H2/N2 jet diffusion flame: Experimental techniques and turbulence-chemistry interaction. Combustion and Flame 123, 326-343, 2000.
15. Marazioti P. An aerothermoacoustic model for computation of the combustion noise (roar) radiated by lifted turbulent jet diffusion flames. Electronic journal “Technical Acoustics”, http://www.ejta.org, 2009, 8.
16. T. Echekki and J. H. Chen. The effects of complex chemistry on triple flames. NASA CTR manuscript, Proceedings of the Summer School, 217-233, 1996.
17. D. Papailiou, P. Koutmos, C. Mavridis and A. Bakrozis. Simulations of local extinction phenomena in bluff-body stabilized diffusion flames with a Lagrangian reactedness model. Combustion Theory and Modelling, 3, 409-431, 1999.


 

Панагиота Маразиоти получила техническое образование в Великобритании (Cranfield University). Диссертацию защитила в университете г. Патрас (Греция) на кафедре машиностроения. В настоящее время работает на кафедре энергетики Технологического института г. Афины. Научные интересы шум горения, методы измерений, обработка данных.

e-mail: emaraziot(at)upatras.gr